The Smith normal form of a specialized Jacobi–Trudi matrix
نویسندگان
چکیده
منابع مشابه
The Smith normal form of a specialized Jacobi-Trudi matrix
Let JTλ be the Jacobi-Trudi matrix corresponding to the partition λ, so det JTλ is the Schur function sλ in the variables x1, x2, . . . . Set x1 = · · · = xn = 1 and all other xi = 0. Then the entries of JTλ become polynomials in n of the form ( n+j−1 j ) . We determine the Smith normal form over the ring Q[n] of this specialization of JTλ . The proof carries over to the specialization xi = q i...
متن کاملThe Smith Normal Form of a Matrix
In this note we will discuss the structure theorem for finitely generated modules over a principal ideal domain from the point of view of matrices. We will then give a matrixtheoretic proof of the structure theorem from the point of view of the Smith normal form of a matrix over a principal ideal domain. One benefit from this method is that there are algorithms for finding the Smith normal form...
متن کاملThe Smith Normal Form of a Matrix
In this note we will discuss the structure theorem for finitely generated modules over a principal ideal domain from the point of view of matrices. We will then give a matrixtheoretic proof of the structure theorem from the point of view of the Smith normal form of a matrix over a principal ideal domain. One benefit from this method is that there are algorithms for finding the Smith normal form...
متن کاملThe Smith Normal Form Distribution of A Random Integer Matrix
We show that the density μ of the Smith normal form (SNF) of a random integer matrix exists and equals a product of densities μps of SNF over Z/p sZ with p a prime and s some positive integer. Our approach is to connect the SNF of a matrix with the greatest common divisors (gcds) of certain polynomials of matrix entries, and develop the theory of multi-gcd distribution of polynomial values at a...
متن کاملSmith Normal Form of a Multivariate Matrix Associated with Partitions
Abstract. Considering a question of E. R. Berlekamp, Carlitz, Roselle, and Scoville gave a combinatorial interpretation of the entries of certain matrices of determinant 1 in terms of lattice paths. Here we generalize this result by refining the matrix entries to be multivariate polynomials, and by determining not only the determinant but also the Smith normal form of these matrices. A priori t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: European Journal of Combinatorics
سال: 2017
ISSN: 0195-6698
DOI: 10.1016/j.ejc.2016.12.008